Verifying Secrets and Relative Secrecy

Dennis Volpano*

Abstract

Systems that authenticate a user based on a shared secret
(such as a password or PIN) normally allow anyone to query
whether the secret is a given value. For example, an ATM
machine allows one to ask whether a string is the secret PIN
of a (lost or stolen) ATM card. Yet such queries are prohib-
ited in any model whose programs satisfy an information-
flow property like Noninterference. But there is complexity-
based justification for allowing these queries. A type system
is given that provides the access control needed to prove that
no well-typed program can leak secrets in polynomial time,
or even leak them with nonnegligible probability if secrets
are of sufficient length and randomly chosen. However, there
are well-typed deterministic programs in a synchronous con-
current model capable of leaking secrets in linear time.

1 Introduction

A common approach to authenticating a user is based on a
shared secret. Normally, anyone can ask whether the secret
is a particular value. For instance, password-based authen-
tication allows anyone to ask whether a certain string is the
password of a given user. An ATM permits anyone to ask,
for a given card, whether a string is the hidden PIN (Per-
sonal ID Number) of that card, and so on. Formalizing the
secrecy guaranteed by systems that use this form of authen-
tication is beyond the scope of information-flow techniques
because their goal is absolute secrecy.

For instance, suppose h is a constant (read-only variable)
whose value is a k-bit integer secret. If we represent a query
as match(e), which is true iff b = e, then a brute-force attack
on h can be represented by a simple loop:

l:=0;
while ~match(l) do
l:=1+1

An information-flow property like Noninterference [5, 15, 12,
14] rejects the program. Given that h has security class
H (high) and [has security class L (low), Noninterference

*Computer Science Department, Naval Postgraduate School, Mon-
terey, California 93943. Email: volpano@cs.nps.navy.mil.

fSchool of Computer Science, Florida International University, Mi-
ami, Florida 33199. Email: smithgQcs.fiu.edu.

L Appears in the Proceedings of the 27th ACM Symposium on Prin-
ciples of Programming Languages, Boston MA, 19-21 Jan. 2000.

2ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

Geoffrey Smith'

requires that the final value of [be independent of the initial
value of h—this plainly fails here.

But the loop is a ©(2") attack, assuming the value of h
is chosen at random. So as long as k is large enough and the
value of h is randomly chosen, we do not consider the at-
tack a threat and would like a secrecy criterion that reflects
this view. Our approach is to adopt a relative criterion for
secrecy that depends upon certain parameters, specifically,
the number of bits in a secret and randomness. The idea
is to admit only those programs for which it can be proved
that sufficiently-long secrets cannot be learned in polyno-
mial time or even learned with nonnegligible probability in
polynomial time if randomly chosen.

The query expression match(e) also represents the most
basic tool any attacker has for compromising public-key
cryptography. Given ciphertext ¢ that is the result of en-
crypting plaintext h with a public key, an attacker can test
efficiently whether h is a particular string e simply by en-
crypting e with the public key and seeing whether the same
ciphertext ¢ is produced. Of course the nonuniform dis-
tribution of plaintext makes cracking a public-key system
with match queries different from a brute-force attack on a
random secret. Good dictionary attacks exploit the distri-
bution. In this case, match queries may not be justified from
a complexity standpoint and another cryptographic system
may be required.

In this paper, we consider the problem of trying to learn
the k-bit integer value of a constant h of type H using well-
typed programs written in a deterministic programming lan-
guage with match queries. We require that programs be well
typed in the system of [15], except that we allow the type
of match queries to be L, which destroys traditional Nonin-
terference properties.

Instead, we argue for the security of our language by
proving that no well-typed program that is capable of de-
ducing h runs in time bounded by a polynomial in k (the
size of h). Notice that such a result appears to separate P
and NP (see pg. 373 of [11]), as a well-typed nondetermin-
istic program can guess h and verify its guess with match
in time linear in k. But our result actually separates rela-
tivized forms of P and N'P because of our use of the match
oracle. This sort of separation was shown long ago [1].

The preceding guarantee is the best one can do in the
absence of any probability distribution for the values of h.
In the case where there is a distribution, we can talk about
the probability of successfully learning h. We show that if
the value of h is chosen with respect to a uniform proba-
bility distribution, then for any well-typed polynomial-time
program c, the probability that ¢ successfully learns h goes
to zero as k increases.

One might conclude that equality testing is safe in gen-
eral, and that we could simply give e; = e2 type L, regard-

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
01 JAN 2000

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Verifying Secrets and Relative Secrecy

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA

93943, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT
unclassified unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

9

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

less of the types of e; and e».? However, this is not so; it
then becomes possible to leak a secret in linear time.

Finally, we consider the effect of adding concurrency to
the language. Unlike our previous work [12, 14], we consider
a synchronous form of concurrency, so that programs remain
deterministic. We show that synchronous concurrency, even
without match queries, allows well-typed programs to leak
secrets in linear time.

2 The deterministic language

In this paper, we consider a deterministic imperative pro-
gramming language with a query primitive match:

(ezpr) e == x| n | h | match(e) | e1 +e2 |
ex<ex | e1=ex | e1 # e
(ecmds) ¢ == skip | z:=¢ | c1;¢2 |
if e then c¢; else ¢ |
while e do ¢

Metavariable x ranges over identifiers that are mapped by
memories to integers; n ranges over integer literals. Integers
are the only values; we use 0 for false and nonzero for true.
The special identifier h is a read-only variable whose binding
we assume is secret.

A standard transition semantics for the language is given
in Figure 1. A memory p is a mapping from identifiers to
integers. We assume that expressions are evaluated atom-
ically. Thus we simply extend a memory in the obvious
way to map expressions to integers, writing u(e) to de-
note the value of expression e in memory p. We say that
pn(mateh(e)) = 1iff p(h) = p(e); otherwise p(match(e)) = 0.
Note that expressions do not have side effects, nor do they
contain partial operations like division. Thus p(e) is defined
for all e, so long as every identifier in e is in dom(p).

These rules define a transition relation —» on configu-
rations. A configuration is either a pair (c,p) or simply a
memory p. In the first case, ¢ is the command yet to be
executed; in the second case, the command has terminated,
yielding final memory p. As usual, we define K —° &, for
any configuration &, and K —* £”, for k > 0, if there is a
configuration &’ such that K —*~! &’ and &' — "'.

3 Relative secrecy

We begin by looking at relative secrecy properties that can
be proved for programs that access h via match queries only.
Then, in Section 5, we give a reduction that extends these
results to programs that may have free occurrences of h.
The reduction requires that these programs be well typed
under the type system of Section 4.

The first property is an intractability guarantee:

Theorem 3.1 There is no deterministic command capable
of copying the k-bit integer value of h into a variable | in
time polynomial in k, for all k, if h is accessed via match
queries only.

Proof. Suppose ¢ runs in polynomial time p(k) where k is
the number of bits needed to encode the value of h. Choose
k large enough so that 2% > p(k) + 1. Since ¢ can make at
most p(k) queries and 2¥ > p(k)+ 1, there are k-bit integers

2In contrast, < is clearly dangerous, as it allows a secret to be
computed by binary search.

i and j such that 7 # j and neither i nor j is queried by c.
Now ¢ must copy the value ¢ into [when the value of h is ¢.
But if it does, then it also copies i into [when the value of
h is j, since it is deterministic and does not query j. [

Notice that if commands were nondeterministic, then a com-
mand could nondeterministically choose an integer n and
then issue a query match(n). If the query succeeds, it copies
n into I. So we can always copy the value of h in nondeter-
ministic polynomial time.

The preceding guarantee is the best one can do in the
absence of any probability distribution on the values of h,
or in other words, when its values are chosen nondetermin-
istically. When there is a probability distribution for h, we
can talk about the probability of copying h. Indeed, in this
case, a command might succeed often, perhaps even most
of the time, in copying h. However, one can show that if
access to h is limited to match queries, then any determin-
istic, polynomial-time command for copying h to a variable
I will succeed with only negligible probability for uniformly-
distributed and sufficiently-large values of h.

Suppose c is a deterministic command that runs in poly-
nomial time p(k) and accesses a constant h via match queries
only. And suppose the value of h is a k-bit integer, cho-
sen with respect to some probability distribution d on k-bit
integers. Finally, assume that k is large enough so that
2% > p(k). Now, as c runs, it makes match queries in an
attempt to learn h. If any such query gets result 1, then c
can put the correct value into ! and halt. But in p(k) time,
¢ can query at most p(k) out of the 2% possible values of
h. Since 2* > p(k), all of ¢’s queries might get result 0. In
such a run, ¢ must eventually halt and put some value v
into [. But note that since c is deterministic and accesses
h only through match queries, c¢’s behavior will be exactly
the same if the value of h is any of the unqueried integers—
in any such run, ¢ will make exactly the same sequence of
queries and will finally write the same default value v into
[. That is, for any such ¢ we can identify a set .S of at most
p(k) integers that ¢ will query, and a default value v that c
will write into [if all of the queries get result 0. It follows
that ¢ will be successful in copying the value of h into [if
and only if the value of h is in S U {v}.

Given distribution d, how can ¢ maximize its probability
of success? Clearly, the best strategy is to choose S and v
so that d(S U {v}) is as large as possible. This can be done
by choosing the p(k) 4+ 1 most likely values under d, putting
p(k) of them into S, and using the remaining value as v.

The probability of success may be high if either k is too
small or the probability distribution d is severely skew. But
if d is a uniform distribution, so that all possible values of
h are equally likely, then for any choice of p(k) + 1 elements
of SU{v} we have

p(k) +1
(Indeed, we can see that a uniform distribution minimizes
¢’s probability of success.) Hence we have proved

Theorem 3.2 If the value of h is a uniformly distributed
k-bit integer and c is a deterministic command that runs in
polynomial time p(k) and accesses h via match queries only,
then the probability that c successfully copies the value of h
into a variable | is at most (p(k) + 1)/2".

(@ = e,1) — Alz = u(e)]

(if e then ¢ else c2, u) — (c1,p)

(if e then ¢ else c2, u) — (c2,)

(No-op) (skip,) — p
(UPDATE) x € dom(u)
(SEQUENCE) (c1,p) —
(Cl; C2, :u') — (62’ lu’l)
(c1,p8) — (ch, 1)
(c15e2,p) — (clsca, 1)
(BRANCH) u(e) #0
ple) =0
(Loop) u(e) =0

(while e do ¢, pu) — p

ple) #0

(while e do ¢,) — (c; while e do c, p)

Figure 1: Transition semantics

4 The type system

Now we wish to allow programs to access h directly, rather
than just via match queries. Of course, a program could
then simply do [:= h, so we need another mechanism to
ensure that h is not leaked. For this purpose, we impose a
type system.

The types are stratified into data and phrase types:

(data types) Tu=L| H
(phrase types) p == 7 | Tvar | T emd

The data types are just the security levels low and high. The
rules of the type system are given in Figure 2. They just
extend the system of [15] with a rule for match. The rules
allow us to prove typing judgments of the form v Fp: p as
well as subtyping judgments of the form p; C p>. Here ~
is a typing that maps identifiers to types of the form 7 var,
except for h which is mapped by every typing to H. The
typing rules for the remaining binary operators are similar
to that for EQ. Intuitively, v classifies variables as either
high or low, and the typing rules prevent information from
flowing from high variables to low variables.

Notice that rule QUERY allows one to assign type L to
a query even though that query is against a high constant.
It is this rule that breaks Noninterference [15], for it allows
some information about a secret to become public. Also note
that the rule allows restricted access to a high constant in
the guard of a while loop or conditional without requiring
the body or branches to be typed as H ¢md. This provides
more flexibility in programming, and indeed it now becomes
possible to write a conditional that, through an indirect flow,

copies a one-bit secret to a low variable. But match is clearly
unsafe with a secret of only one bit!

5 The reduction

We reduce the problem of learning the value of h, using a
deterministic program whose access to h is limited to match
queries, to that of learning the value of h using a well-typed
deterministic program (whose access to h is not limited to
queries). More precisely, we show that every well-typed com-
mand’s computation with respect to low variables can be
simulated, with no increase in time complexity, by a com-
mand whose access to h is restricted to match queries. So
learning a secret with any well-typed program is as hard
as learning it with only match queries at your disposal.
Hence the relative secrecy properties apply to well-typed
commands. If a program is not well typed then all bets are
off, as it could well be the case that a secret is easily leaked
via a direct or indirect flow.
We begin with some definitions:

Definition 5.1 Memories p and v are equivalent with re-
spect to a typing vy, written p~v, if dom(p) = dom(v) =
dom(v) and p(zx) = v(z) for all x such that v(x) = L var.

This definition requires two memories to agree on the con-
tents of all low variables.

Definition 5.2 We say that a command c is a low com-
mand with respect to v if v(x) = L var for every free iden-
tifier x in c.

3Note that this is not the same as saying that the command has
type L cmd, as every well-typed command has type L cmd.

(INT) yEn:L

(SECRET) ~v(h)=H
y-h:H
(R-VAL) ~v(z) = 7 var
yhx:T
(sk1p) vk skip : H cmd
(EQ) yhei:T, yhex:T

yhei=ex: T

(QUERY) yke:L
~ F match(e) : L

(ASSIGN) y(x)=Tvar, yhe:T
Yz :=e:7 cmd

(COMPOSE) yhFeci:Temd, yhco: T emd
yEecijer T emd

(1F) yFe:r, yFer:Temd, yFce2 T emd

v Fif e then c; else ¢2 : 7 ecmd

(WHILE) yFe:T, yFc:7 emd
v+ while e do ¢ : 7 ¢md

(BASE) LCH
(REFLEX) pCp
(CMDi) 71 C 1o

T2 ecmd C 11 emd

(SUBTYPE) yEp:p1, p1 Cp2
YED:p2

Figure 2: Typing and subtyping rules

Definition 5.3 We say that a command c' is a low simu-
lation of a command c with respect to v if ¢ is a low com-
mand relative to v and for all p where dom(u) = dom(v),
whenever (c,pu) —™ ', there is a p” and m such that
(c,p) —"u", W ~p” and m < n.

The reduction is given by the following theorem.

Theorem 5.1 If ¢ is a well-typed command with respect to
v, then there is a low simulation of ¢ with respect to 7.

A proof of the theorem is given in the Appendix. The
essence of the proof is that commands of type H ¢md cannot
affect any low variable. Therefore, they can be replaced by
the skip command. Commands that cannot be given type
H cmd are retained. The result is a command that preserves
the computation on low variables and runs in time bounded
by that of the original command.

Since a low command is limited to accessing h via match
queries, we have the following corollaries:

Corollary 5.2 There is no well-typed deterministic com-
mand capable of copying the k-bit integer value of h to a low
variable in time polynomial in k, for all k.

Corollary 5.3 If the value of h is a uniformly distributed
k-bit integer and c is a well-typed deterministic command
that runs in polynomial time p(k), then the probability that
¢ successfully copies the value of h into a low variable is at
most (p(k) +1)/2"%.

Thus we have shown that the secrecy of h is (practically
speaking) preserved even if programs are allowed to make
match queries freely. One might conclude from this that
equality testing is harmless in general. However, this is not
so. If we allow general equality tests among high expressions
to have type L, then we can leak h in linear time:

l:=0;
mask = 2F 1
while mask # 0 do
b := h & mask;
if b = mask then
l:=1]| mask;
mask := mask > 1

6 Synchronous concurrency

Now consider a deterministic, multi-threaded semantics
where all threads execute simultaneously and synchronously.
Threads are commands that communicate via a shared
global memory. Every thread of a multi-threaded program
can make one transition, according to the semantics of Fig-
ure 1, in a given clock cycle. At each step, parallel reads are
allowed but not parallel writes. The latter situation causes
an evaluation to get stuck.

The synchronous behavior of the model provides well-
typed commands with a timing channel that can be ex-
ploited to leak a secret perfectly in time linear in its size.
Examples of multi-threaded programs capable of doing this
can be found in timing attacks on implementations of cryp-
tography [7]. Here there are bit-wise operations on a secret
key and one exploits the fact that the implementation is op-
timized according to certain bits of the key. An example is
the C implementation of the block cipher algorithm IDEA

in [10] (see pg. 640). The default is to avoid multiplication
when certain bits of a key are zero.

The essence of this sort of attack can be formulated
within the synchronous concurrent model. To formulate it
concretely, let us introduce the bitwise operators ~ (ones
complement), & (bitwise and), | (bitwise or) and >> (right
shift). Typing rules for these operators are similar to that
of rule EQ. We also take the liberty to introduce a while
loop with empty body. Now suppose h stores a k-bit secret
that is being inspected bitwise by a legitimate thread that
simply loops through all bits, doing some computation if a
bit is nonzero and nothing otherwise. Think of the thread
as an implementation of an encryption algorithm where less
time is required if a bit of the k-bit secret key is zero. The
inspection thread is given by the following command:

while mask != 0

if h & mask then
skip;
skip;
skip;
skip

fi

mask := mask >> 1

We set up 2k attack threads, one pair for each bit of the
secret. Each is responsible for setting a particular bit of an
integer stored in low variable [which is where the secret is
leaked. If k = 8, for instance, then for the most significant
bit, we have the threads:

while mask != 128
while mask != 128 ;

; skip;
while mask == 128 skip;
; skip;
1:=11] 128 skip;

1 :=1%¢& ~128

There would be another identical pair for the next bit, ex-
cept they would spin while waiting for mask to become 64,
and so on. The inspection and attack threads share mask
which is a low variable.? Further, all threads are well typed
and every attack thread is a low command which we would
expect since an attack would not have direct access to vari-
ables storing secrets anyway. We have set up a race where
the thread that sets a bit of [to b wins the race iff the
corresponding bit of h is —b.

To illustrate the behavior, suppose the first two bits of
h are 01 and that mask is initially 128. The trace of the
inspection thread on this input is given in the first column
of Figures 3 and 4. Figure 3 shows the trace of a thread pair
attacking the first bit of h while Figure 4 shows the trace of
a thread pair attacking the second bit. The type system is
not equipped to deal with this kind of model where timing
observations can be made. Tricks like atomicity [14] do not
help here because threads in effect share a real-time clock!

If one views the preceding multi-threaded program as a
probabilistic algorithm then

4Making mask a high variable is not a good idea here because then
no assignments to low variables would be allowed in the body of the
loop. This in turn would hamper an implementation of encryption.

while mask != 0 while mask != 128 while mask != 128

if h & mask then while mask == 128 skip

mask := mask >> 1 while mask == 128 skip

while mask != 0 while mask == 128 skip

if h & mask then 1:=11] 128 skip

skip 1 :=1¢& ~128
Figure 3: Timing attack on first bit of h

while mask != 0 while mask != 64 while mask !'= 64

if h & mask then while mask != 64 while mask != 64

mask := mask >> 1 while mask != 64 while mask !'= 64

while mask != 0 while mask != 64 while mask != 64

if h & mask then while mask == 64 skip

skip while mask == 64 skip

skip while mask == 64 skip

skip while mask == 64 skip

skip while mask == 64 1:=1%& "64

mask := mask >> 1 while mask == 64

while mask != 0 while mask == 64

if h & mask then 1:=11] 64

Figure 4: Timing attack on second bit of h

for all n.5 In other words, one can be certain that h stores
a particular secret if the algorithm says so. This is an ideal
probabilistic algorithm.

But consider an interleaving semantics where at each
step of executing a multi-threaded program, exactly one
thread is chosen to execute for a single transition. Now
multi-threaded programs are nondeterministic. If at every
step, every thread has a nonzero probability of being se-
lected by a scheduler, then Pr[h =n |l =n] < 1, for all n,
unless Pr[h =n] = 1. That’s because the final value of [
can be any value with nonzero probability, regardless of h.
Each value of mask will be considered, allowing the thread
pair for the bit in question to execute, and these two threads
can complete in either order with nonzero probability. So
Prll=n|h#n]>0.

The example shows that there are attacks that are
stronger in a synchronous concurrent model than in a prob-
abilistic interleaving one. For each new model, one needs to
investigate the feasibility of revealing secrets.

7 Discussion

It has long been recognized that practical information flow
control must allow for declassifying information. An exam-
ple is a simple password checker. It must indicate whether
a given string matches a user’s password in a password file.
Information-flow control would prohibit the result of such
an attempt from being observed by an arbitrary user. One
way around this restriction is to allow privileged users to
explicitly declassify the result, allowing some information to
leak [9]. If a password checker merely returns the result of
a match query, then the declassification could be justified
knowing that any attempt to exploit the checker in order

5When we run the algorithm and it terminates with | = n, we
want to be able to conclude that h = n with some probability. The
conditional probability Pr[l = n | h = n] is wrong for this purpose. If
Pr[l = n | h = n] = .99, say, and we run the algorithm for some value
of h and it terminates with [= n, then this does not imply h = n with
probability .99. The same argument applies to probabilistic primality
testing algorithms [2].

to learn a password is subject to the limitations of Theo-
rems 3.1 and 3.2.

Note we have said nothing about the role of the type
system at this point. Type checking would be performed
on any program that updates the password file, since this
is where new passwords are input. As long as the password
checker merely returns the result of a match query, password
updating is well typed, and passwords are stored in a secret
(high) file, the password system as a whole is secure in the
sense that it is subject to the limitations of Corollaries 5.2
and 5.3.

But what can we say about the security of a system in
which there is a public file containing the images of the
passwords under some one-way function? The reduction
of Theorem 5.1 can also be used to argue for security in
this case. Suppose we add to our deterministic language a
function f that we believe is a one-way function [11] and
a constant fh bound to the image of h under f. That is,
wu(fh) = p(f(h)), for any memory p. Further, suppose they
are typed as vy fh : L, and for any expression e,

yhe:T
vEfle):r

One cannot allow f(e) to be typed low unless e can be typed
as a low expression. Otherwise, we can copy h into a low
variable [in linear time using a well-typed program similar
to the one in Section 5:

l:=0;
mask := 2871,
while mask # 0do
if f(mask) = f(h & mask) then
l:=1]| mask;
mask := mask > 1

Notice that this program might fail to copy every bit of h due
to a collision caused by f. But this would be unlikely if f is
indeed a one-way function. Also note that fh makes match
unnecessary: if v+ e : L then the expression fh = f(e) can,
practically speaking, be used in place of match(e).

We wish to argue for the security of any well-typed pro-
gram c that uses f. Now ¢ may have free occurrences of h
and can call f according to the typing rules above. Suppose
that ¢ can copy h into a low variable, for all k-bit values of h,
in time ¢(k). By Theorem 5.1, we can construct a low simu-
lation ¢’ of ¢ that does the same thing as efficiently. That is,
given only fh and all calls to f that ¢ makes involving only
low variables, ¢’ can also copy h in t(k) time. In effect, ¢ is
an algorithm for deducing h from fh using some number (as
a function of k) of calls to f. So any lower bound on this
problem applies to copying h with a well-typed program.

Although we suggest above that match could be replaced,
the preceding argument does not subsume our results about
the security of programs that access h using match only. For
instance, the preceding argument about f does not prove an
intractability result for programs limited to accessing h via
fh, as Theorem 3.1 does for match. We have only argued
that the hardness of copying h using a well-typed program
with references to fh and calls to f rests squarely upon the
hardness of inverting f.

Turing reductions have also been used in proving the
security of RSA-based signature schemes [3, 4] and crypto-
graphic protocols [6, 8]. Again the basic idea is to prove that
the security of a protocol rests on the strength of its crypto-
graphic primitives. Our synchronous concurrency example
shows that if an intruder can observe the timing behavior of
an implementation of a cryptographic operation, then the
specification of a protocol that uses the operation cannot
realistically treat it as primitive. A reduction may not exist
because of timing observations, as our example shows.

8 Conclusion

Our research is aimed at characterizing secrecy in systems
with inherent leaks, for example, those that use authentica-
tion based on shared secrets. Noninterference is too strong
for such systems. Instead, we propose a relative secrecy
proof that takes practical security parameters (e.g. key size
and randomness) into consideration.

Acknowledgments

This material is based upon activities supported by the
National Science Foundation under Agreement Nos. CCR-
9612176 and CCR-9612345 [sic]. We are grateful to the
anonymous referees for helpful comments.

References

[1] T. Baker, J. Gill, and R. Solovay. Relativizations of the
P =? NP question. SIAM J. Computing, 4(4):431-442,
1975.

[2] P. Beauchemin, G. Brassard, C. Crépeau, C. Goutier,
and C. Pomerance. The generation of random num-

bers that are provably prime. Journal of Cryptology,
1(1):53-64, 1988.

[3] M. Bellare and P. Rogaway. The exact security of dig-
ital signatures—how to sign with RSA and Rabin. In
Proc. Eurocrypt 96. Lecture Notes in Computer Science
1070, 1996.

[4] M. Bellare and P. Rogaway. Practice-oriented provable
security. In Proc. of First International Workshop on

Information Security. Lecture Notes in Computer Sci-
ence 1396, 1998.

[6] J. Goguen and J. Meseguer. Security policies and secu-
rity models. In Proceedings 1982 IEEE Symposium on
Security and Privacy, pages 11-20, Oakland, CA, 1982.

[6] J. Gray, K. Ip, and K. Lui. Provable security for crypto-
graphic protocols—exact analysis and engineering ap-
plications. Journal of Computer Security, 6(1,2):23-52,
1998.

[7] P. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS and other systems. In Pro-
ceedings 16th Annual Crypto Conference, August 1996.

[8] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A
probabilistic poly-time framework for protocol analysis.
In Proceedings 5th ACM Conference on Computer and
Communications Security, San Francisco, CA, Novem-
ber 1998.

[9] A. Myers. Jflow: Practical mostly-static information
flow control. In Proceedings 26th Symposium on Prin-
ciples of Programming Languages, pages 228-241, San
Antonio, TX, January 1999.

[10] B. Schneier. Applied Cryptography. John Wiley & Sons,
1996. Second Edition.

[11] M. Sipser. Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

[12] G. Smith and D. Volpano. Secure information flow in
a multi-threaded imperative language. In Proceedings
25th Symposium on Principles of Programming Lan-
guages, pages 355—-364, San Diego, CA, January 1998.

[13] D. Volpano and G. Smith. Eliminating covert flows with
minimum typings. In Proceedings 10th IEEE Computer
Security Foundations Workshop, pages 156-168, June
1997.

[14] D. Volpano and G. Smith. Probabilistic noninterfer-
ence in a concurrent language. Journal of Computer
Security, 7(2,3):231-253, 1999.

[15] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(2,3):167-187, 1996.

9 Appendix

The proofs of Theorem 5.1 and the Simple Security and
Confinement lemmas are complicated a bit by subtyping.
Assume, without loss of generality, that all typing deriva-
tions end with a single (perhaps trivial) application of rule
SUBTYPE.

Theorem 5.1 If ¢ is a well-typed command with respect to
v, then there is a low simulation of ¢ with respect to ~y.

Proof. The proof is by induction on the structure of c.

We first consider the case when v ¢ : H ¢md. In this
case, we can simply let the low simulation of ¢ be skip. For
by the Confinement lemma below, ¢ does not assign to any
variable x for which v(z) = L var. Hence if (c, u) —™ ',
then p'~. . And we have (skip,) —* p, by rule NO-OP.

Finally, we note that n > 1 and that skip is a low command
with respect to .

Next we consider the case when v I/ ¢: H ¢md. In this
case we must have v - c¢: L e¢md (since c is well typed under
v) and the derivation must end with a trivial application
of rule SUBTYPE (since otherwise we would have v F ¢ :
H c¢md). We now consider the possible forms of ¢

Case skip. Since v | skip : H c¢md, this case has already
been handled.

Case z := e. By the discussion above, there is a deriva-
tion of 7y x := e : L ¢md that ends with an application of
rule ASSIGN. This implies that v(z) = L var and v F e : L.
So, by the Simple Security lemma below, v(y) = L var for
every identifier y free in e. Therefore = := e is itself a low
command relative to 7, and z := e is thus (trivially) a low
simulation of itself.

Case if e then c; else c2. Again by the discussion
above, there is a derivation of v I if e then c; else ¢» :
L ¢md that ends with an application of rule 1F. Hence
v F e: L and both ¢; and ¢ are well typed with respect to
7. Then by induction there exist commands ¢ and c which
are low simulations of ¢; and cs, respectively, with respect
to 7. We claim that if e then ¢ else c} is a low simulation
of if e then c; else c» with respect to . First, note that
it is a low command under v, since (by the Simple Security
lemma) y(z) = L var for every free identifier z in e. Next,
suppose that g is a memory such that dom(u) = dom(y)
and (if e then c; else ca,u) —™ p'. Then if u(e) # 0,
the evaluation has the form

(if e then ¢; else ca,) — (c1,p) —" ' p.
Therefore, since ¢ is a low simulation of c;, there exists a
memory p” and an integer m such that (ci,p) —™ p”,
W ~yp" and m < n — 1. Therefore, by rule BRANCH,

(if e then | else ch,u) — (cy,p) —™ .

And m + 1 < n. The argument is similar in the case when
u(e) =0.

Case c1;c2. As above, there is a derivation of v - ¢1;¢2 :
L c¢md that ends with an application of rule COMPOSE, im-
plying that ¢ and c» are well typed under . So by in-
duction there exist commands ¢} and ¢} which are low sim-
ulations of ¢; and c2, respectively, with respect to v. We
claim that c};ch is a low simulation of ci;co under v. For
suppose that p is a memory with dom(pu) = dom(y) and
(c1;c2,u) —™ p'. By Lemma 9.4, there exist k and p”" such
that 0 < k < n, (c1,p) —* p”', and (ca,p”") —"7F u'.
Since ¢} is a low simulation of ¢, there exist v" and m
such that (c},p) —™ v, p'~v", and m < k. And since
¢y is a low simulation of ¢, there exist v/ and j such that
(G, ") — ', iyt and < — K.

Now c¢; is well typed under v and therefore h is not
assigned to in c¢1 because y(h) = H (i.e. h is not a vari-
able). So p”(h) = p(h). Further, ¢} is a low command,
so v''(h) = p(h). Hence p"(h) = v"(h). Since p'’'~ ",
' (h) = v"(h), and ¢, is a low command, we have

(cy, "y —7 '8
Therefore, by Lemma 9.5, (ci;ch,p) —™% v/, And m +
j<k+n—k=n

SNote that this conclusion does not follow simply from the facts
that (ch,pu'") —7 v' and p'’~4v'", because ¢, may contain match
queries.

Case while e do ¢;. As above, there is a derivation
of v F while e do ¢1 : L ¢md ending with rule WHILE,
which implies that v + e : L and ¢; is well typed with
respect to v. By induction, there is a low simulation c}
of ¢1 with respect to v. We claim that while e do ¢} is a
low simulation of while e do c¢; with respect to . First,
it is a low command under 7, since (by the Simple Secu-
rity lemma) v(z) = L var for every free identifier z in e.
Next, suppose p is a memory with dom(u) = dom(v) and
(while e do ci,u) —™ p/. Then by Lemma 9.1, there ex-
ist ' and m such that (while e do ci,u) —™ v/, p'~y0/,
andm<n. O

Lemma 9.1 Suppose that ¢’ is a low simulation of ¢ with
respect to 7y, c is well typed under v, dom(u) = dom(y), and
(while e do ¢, u) —" p'. Then there exist v' and m such
that (while e do ¢/, pu) —™ V', ' ~4v', and m < n.

Proof. By induction on n.
If n = 1 then, by the first LoOP rule, u(e) = 0 and p’ = p.
So (while e do ¢, u) — p by the first LOOP rule.
Suppose n > 1. Then by the second LOOP rule, we have

n—1

(while e do ¢,) — (c; while e do ¢,) —" ' 1.
By Lemma 9.4, there is a p" and k such that (c, u) —* p”,
(while e do ¢,p”’) —"'7% i/, and 0 < k < n — 1. Since
" is a low simulation of ¢, there is a memory v’ and integer ¢
such that (¢',pu) —* v", p” ~,v" and i < k. And by induc-
tion, there is a ¢/ and j such that (while e do ¢, p") —7
Vi, p~v and j<n—1—k.

Now c is well typed under ~ and therefore h is not as-
signed to in ¢ because y(h) = H. So " (h) = p(h). Further,
¢’ is alow command, so v"' (h) = u(h). Hence p”’ (k) = v" (h).
Since p"'~,v", p' (k) = V" (h), and while e do ¢ is a low
command, we have (while e do ¢,v") —J v'. Therefore
by Lemma 9.5,
itj !

(¢';while e do ¢/, u) —"7 V',

And by the second LOOP rule
(while ¢ do ¢/,) — (¢'; while e do ¢/, p).

Therefore, (while e do ¢/,) —' 7T /. Andi+j+1<
Ek+(n—-1—-k)+1=n O

Lemma 9.2 (Simple Security) IfyFe: L then y(z) =
L var, for every free identifier x in e.

Proof. By induction on the structure of e. Since H € L, the
derivation of v - e : L ends with a trivial application of rule
SUBTYPE.

1. Case n. The lemma holds vacuously.
2. Case z. By rule rule R-VAL, y(z) = L var.

3. Case match(e). By rule QUERY, we have yFe: L. By
induction, y(z) = L var for every free identifier z in e.

4. Case e = e3. By rule EQ, vy e; : Land v F ez : L.
By induction, y(z) = L var for every free identifier z
in e; and ez. The other binary operators are handled
similarly.

Notice here a departure from our earlier work. We can
have v F e : L and p~qp' yet p(e) # p'(e), if p and o
disagree on the value of h. This fact breaks some forms of
Noninterference introduced in our earlier work, specifically
[12, 13, 14]. These forms are essentially bisimulations which
are sensitive to any difference in the value of h.

Lemma 9.3 (Confinement) If v - ¢ : H e¢md, then we
have v(x) = H wvar, for every variable x assigned to in c.

Proof. By induction on the structure of ¢. Since L ¢md ¢
H cmd, the derivation of v F ¢ : H ¢md ends with a trivial
application of rule SUBTYPE.

1. Case skip. The lemma holds vacuously.
2. Case z :=e. By rule AssIGN, y(z) = H var.

3. Case c1;c2. By rule COMPOSE, we have v+ ¢1 : H emd
and v F ¢2 : H cmd. By induction, we have v(z) =
H wvar for every variable x assigned to in ¢; and in cs.

4. Case if e then c¢; else c2. By rule IF, we have v+ ¢; :
H c¢md and v F ¢z : H emd. By induction, we have
~(x) = H wvar for every variable z assigned to in ¢1 and
in co.

5. Case while e do c¢. By rule WHILE, we have v F ¢ :
H cmd. By induction, we have v(z) = H var for every
variable = assigned to in c.

0

The next two lemmas treat the behavior of sequential
composition:

Lemma 9.4 If (c1;c2,) — ', then there exist k and p”
such that 0 < k < j, (c1,pn) —* p'" and (c2, ") —37% 4.

Proof. By induction on j. If the derivation begins with an
application of the first SEQUENCE rule, then there exists p'’
such that (c1,) — ¢ and (c1;ca,p) — (ca,p’’) —371
i'. So we can let Kk = 1. And, since j —1 > 1, we have
k<.

If the derivation begins with an application of the sec-
ond SEQUENCE rule, then there exists ¢} and g1 such that
(c1,p) — (1, 1) and (ci5ea, 1) — (chjez,) —7 71 '
By induction, there exists k¥ and u” such that 0 < k <
j—1, (c¢i,m) —* p", and (ca,p") —/7'7% 4. Hence
(c1,p) —FF 4 and (co,p”") —9~*FD 10 And 0 <
k+1<j. O

Lemma 9.5 If (c1,p) —7 4 and (ca,p') —* W', then
(CHENDE T

Proof. By induction on j. If j = 1 then by the first
SEQUENCE rule, (ci;ca,pu) — (c2,p’) —* p”. Hence
(c15c0,) —' T "

If j > 1 then there exist ¢ and pi such that (e, p) —
(¢h,p1) —~' 4. By induction, (cj;c2,p1) —I7 1Tk
p”. And, by the second SEQUENCE rule, (ci;ca,pu) —

(cl;c2,pu1). Hence (c1;c2, 1) A g0

